9 research outputs found

    CPT, T, and Lorentz Violation in Neutral-Meson Oscillations

    Full text link
    Tests of CPT and Lorentz symmetry using neutral-meson oscillations are studied within a formalism that allows for indirect CPT and T violation of arbitrary size and is independent of phase conventions. The analysis is particularly appropriate for studies of CPT and T violation in oscillations of the heavy neutral mesons D, B_d, and B_s. The general Lorentz- and CPT-breaking standard-model extension is used to derive an expression for the parameter for CPT violation. It varies in a prescribed way with the magnitude and orientation of the meson momentum and consequently also with sidereal time. Decay probabilities are presented for both uncorrelated and correlated mesons, and some implications for experiments are discussed.Comment: 11 pages, references added, accepted in Physical Review

    The environments of radio galaxies

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D56826/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Development of a novel minimally invasive scaffold system for spinal disc repair

    Get PDF
    Debilitating chronic back pain caused by severe spinal disc degeneration leads to loss of mobility, affecting quality of life, a significant loss of productivity for the employee and the employer. Currently available surgical intervention options, such as spinal fusion and total disc replacement, seeking only to alleviate pain, are not only invasive, but fail to address the underlying biological causes of spinal disc degeneration, or restore normal physiological spinal motion. Recently proposed tissue engineering approaches focus on stopping and reversing the degenerative cascade, which has a promising regenerative effect, though not without significant challenges before a clinical application is made available, including tumourigenesis risks and proof of efficacy. A minimally invasive nucleus pulposus replacement option, which preserves the competent annulus fibrosis, while replacing the removed degenerated nucleus tissue with a prosthesis, provides an alternative for early disc degeneration, though most commercially available types are at clinical trial stages. There is an opportunity for developing a minimally invasive nucleus pulposus replacement type spinal implant system that restores disc biomechanics and addresses biological degenerative causes. This body of work details the design, development, fabrication, prototyping, verification and validation of this novel implant system. The implant system consisted of a configuration of scaffold and hydrogel interpenetrating polymer network composite delivered minimally invasively via a cannula system, after the nucleus pulposus is removed in a nucleotomy with a set of specialised tools. Implantation of the novel prosthesis was shown to be successful in various spinal disc models, in meeting identified design and functional requirements, including biomechanical loading, resistance to expulsion and radiopacity

    Kiloparsec-Scale AGN Jets

    No full text
    corecore